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Abstract

Multi-Instance Multi-Label (MIML) learning is a popular

framework in machine learning, where each object is repre-

sented by a bag of instances, and associated with multiple

labels. While MIML learning has achieved success in many

applications, it is less clear how the labels are related to the

instances. In this paper, we propose to study the causal

relation between instances and labels, which on one hand

can improve the interpretability of complicated MIML mod-

els, and on the other hand may further improve the pre-

diction performance at both instance and bag levels. We

exploit prototypes in the instance space as a bridge to rep-

resent the examples, and then propose an efficient algorithm

to identify the causal relations from prototypes to class la-

bels, which are further utilized for model training and key

instance detection. Experiments on various datasets show

that in addition to superior classification performance, our

approach can identify reasonable causal relations between

instances and labels.

1 Introduction

Multi-Instance Multi-Label learning is a popular frame-
work for learning from complicated objects. In MIML,
each example is represented by a bag of instances, and
at the same time is annotated with multiple class la-
bels. For example, in the task of text categorization, a
document consists of multiple paragraphs, each one is
represented by an instance; and may be simultaneously
related to finance and politic. Figure 1 is an illustration
of the MIML framework [32].

During the past years, MIML has achieved success
in various applications, such as image classification
[4, 31], text categorization [29], music analysis [6], etc.
However, given the high complexity of the learning
objects, it becomes rather challenging to learn the
many-to-many mapping from instance space to the label
space. Many methods try to degenerate the MIML
problem into traditional supervised learning problems
and then solve them via existing approaches [31]. Such
methods can reduce the complexity of MIML problems
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Figure 1: Illustration of MIML framework [32].
An object is represented by a bag of multiple

instances, and associated with multiple class labels.

and scale well with the data size. However, they may
loss important information by treating the labels or
instances independently, and subsequently obtain sub-
optimal performance. It thus attracts many research
interests to exploit the relationship among instances or
labels to help the learning task.

Some methods try to exploit the label relationship,
mainly by constraints on label co-occurrence [7, 23] or
model reusing among labels [11]. While exploiting high-
order label correlation is difficult or even impossible due
to the high computational cost, second-order correlation
is commonly considered between label pairs, which
however, can only partially capture relationship in
the output space [7, 23]. Some other methods try to
exploit the instance relationship in the input space. For
example, the spatial relationships in a bag are exploited
under the assumption that instances are non i.i.d. [30].

While exploiting the relationships either in input
space or output space can somehow improve the per-
formance of MIML, it is more essential to disclose the
causal relation between instances and labels. Firstly,
exploiting the causal relation can improve the inter-
pretability of the learning models, which is especially
important for the complicated MIML framework. For
example, in medical image analysis, in addition to an
accurate model that can predict the diseases based on
the image, it is also crucial to let people know what
causes the disease. Secondly, exploiting the causal re-
lation may help to improve the learning performance.
The causal relation describes the direct effect of an in-
stance to a label, and may provide useful guidance to
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the model training in addition to the empirical loss min-
imization. Actually, with causal relations considered, it
would be naturally disclosed that the labels with shared
cause will be correlated with each other. This provides
us an efficient and effective approach to multi-instance
multi-label learning without the time-consuming pro-
cess of utilizing the label correlations.

In this paper, we propose to identify the causal rela-
tion between instances and labels with prototype based
representation as a bridge. Specifically, prototypes are
collected by performing clustering the original instance
space, and then each instance can be represented by
the similarities between itself and the prototypes. Af-
ter that, based on a DAG structure of the prototypes,
we propose an efficient algorithm to identify the causal
relations from prototypes to class labels by examining
the conditional independence. With the identified cau-
sations, on one hand, we select the feature dimensions
corresponding to the cause prototypes to train a MIML
model for better performance; and on the other hand,
the key instances for each label can be detected from
the bag based on the cause prototypes. Experiments
are performed on different tasks; and the comparison re-
sults with some state-of-the-art methods show that by
exploiting the causal relation, the proposed approach
can achieve significant better performance with high in-
terpretability.

The main contributions of this study are summa-
rized as follows:

� For the first time we propose to study the causal
relations between instances and labels under the
MIML framework. We disclose that causal discov-
ery is a more essential problem in MIML, and can
help to improve both the prediction performance
and interpretability.

� We propose an effective approach by firstly trans-
forming the instances into prototype based repre-
sentations, and then efficiently identify the causa-
tions from DAG structured prototype variables.

� Extensive experiments are performed to validate
the superiority of the proposed method on the label
prediction, the interpretability and the key instance
detection.

The rest of this paper is organized as follows.
Section 2 reviews some related studies on MIML and
causality. Section 3 presents our approach in detail,
followed by the experiments in Section 4. Finally,
Section 5 concludes with future work discussed.

2 Related Work

Multi-Instance Multi-Label learning has attracted many
research interests due to its advantages on learning with
complicated objects [12,13,15,20,26,31,32]. A lot of ef-
forts are made on designing effective algorithms for this
high-complexity framework, mainly by exploiting the re-
lationship among instances or labels. In [31], under the
assumption of independence among the labels or the
instances, authors proposed MIMLSVM by degenerat-
ing MIML to single-instance multi-label problems, and
MIMLBooost by degenerating MIML to multi-instance
single-label problems. After the degeneration, the cor-
relations may be further exploited to improve the effec-
tiveness. For example, instances are treated as non i.i.d.
in [30], and different orders of label correlations may be
utilized [7, 23]. There are also some methods try to ex-
ploit the correlations without degeneration [2, 19, 32].
For example, the cluster structure inside each class is
considered in [19] . These methods can somehow bene-
fit from the correlations considered to get better perfor-
mance. However, they focus on the relationship within
either the instance space or label space, but fail to study
the causal relations from instances to labels, which is
more essential. There are a few studies try to find what
instances trigger what labels under the MIML frame-
work [13, 20]. However, these methods focus on identi-
fying the key instances based on the prediction model,
instead of exploiting the real causal relations between
instances and labels.

In the literature of causality, causal discovery is one
of the most important problems. There are mainly two
kinds of methods. One is constraint-based approaches
[10, 14, 16, 18, 22], which discover the causal relation
based on the conditional independence. The other is
score-based approach [5], in which every possible causal
structure is given a score and that with the highest score
will be output.

Traditional constraint-based approach [22] can not
identify the causal structure in the Markov equivalence
class. In order to overcome this shortcoming, the addi-
tive noise model is considered in [10]. Based on the sim-
ilar idea, it is extended to a more general case with post-
nonlinear causal model in [27]. Then in [14] and [18], a
novel causal discovery approach named Regression with
Subsequent Independence Test (RESIT) is proposed,
which is also based on noise additive model and employs
a regression method to minimize the statistical depen-
dence between the regressors and residuals. Also, causal
discovery between discrete variables is studied in [17].

3 MIML with Causal Discovery

We denote by D = {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)}
a MIML dataset with n bags, where Xi =
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{xi,1,xi,2, · · · ,xi,ni
} is the i-th bag consisting of ni in-

stances, and Yi ⊂ {y1, y2, · · · , yL} is the relevant subset
of all L possible labels. Let X denotes the space of in-
stances and Y denotes the space of labels, the task of
MIML is to learn the mapping function f : 2X → 2Y

based on D. In this paper, in addition to the function
f , we also want to identify the causal relations between
instances and labels. Formally, given a relevant label yl
of the bag Xi, we want to identify the instance x∗i,l ∈ Xi

that causes the label yl.
Obviously, it is infeasible to directly apply causal

discovery techniques to the instance level because they
are designed to identify the causal relations between
single variables. One alternative solution is to examine
the causal relation between each feature dimension and
a specific label. However, in many applications, one
dimension of the feature space does not necessarily
have a semantic meaning, which prevents us from
understanding the model even causations. To overcome
this challenge, we introduce prototype representations
as a bridge, based on which the instances will be
transformed into a new space with explicit semantic
meaning in each dimension. After discovering the
causal relations between prototypes and labels, the
cause instances can be further identified easily with a
simple classification model.

To transform instances into a new representation
suitable for causal discovery, we firstly collect all the
instances from the whole training set, and then perform
clustering to obtain the cluster centers as prototypes.
Each prototype represents some common properties
shared by a group of similar instances and can be
expected to has some semantic meanings [13]. Denoting
by c1, c2, · · · , cK the K prototypes, then an instance x
can be transformed into the new representation φ(x)
with K dimensions:

(3.1) φ(x) = [sim(x, c1), sim(x, c2), · · · , sim(x, cK)],

where each dimension is the similarity between the
instance and the corresponding prototype, measured by
the function sim(x, ck) = exp(−‖x− ck‖22/δ2k). Here δk
denotes the average distance between the prototype ck
and all instances within this cluster. Further, we can
also have a K-dimensional feature vector to represent
each bag X as follows:

φ(X) = [sim(X, c1), sim(X, c2), · · · , sim(X, cK)],

where sim(X, ck) = maxx∈X{sim(x, ck)}.
We then try to discover the causal relations between

feature variables and labels in the new representation
space, where each feature variable corresponds to a
prototype. For simplicity of presentation, we will refer

to the variable corresponding to a dimension in the
prototype based representation space as a prototype
variable.

In traditional causal discovery studies, the task is
to identify all the causal relations from a given set
of variables, where all variables are treated equally.
However, in our task, we have two different groups of
variables: the continuous variables of prototype features
and the discrete variables of class labels. Also, we
have a strong prior knowledge that some features cause
some labels, but not vice versa. This difference, on one
hand prevents us from directly applying existing causal
discovery methods to our task, but on the other hand
brings a good news that we can focus on identifying
causal relations only from prototype variables to label
variables, instead of among all variables. Besides, we
notice there are no causations between labels. Because
the label we give only depends on the object, but not
other labels. With these prior knowledge, we propose to
efficiently discover the causal relations with two steps.

In the first step, we employ an existing approach
RESIT [18] to determine the causal orders of prototype
variables. RESIT tries to find a directed acyclic graph
(DAG) to represent the causal relations, where each
variable corresponds to each node, and the parent nodes
have a direct cause effect to the children nodes. Given a
candidate DAG, RESIT models a node zi as a function
of its parents as follows,

zi = fi(pa(zi)) + µi, i = 1, . . . , n,

where n is the number of nodes, µi stands for the
noise about the node zi. Then the algorithm tries to
approximate the unknown function fi by minimizing
the dependence between the residuals and the parents
nodes. The dependence is measured by the empirical
HSIC estimator [9]. After that, the residuals could
be estimated. For every node, if its residuals are
independent with its parents nodes, then we consider
there is no causal relations between them.

We employ the RESIT algorithm to obtain the
causal relations between the prototype variables. For
clarity of presentation, we further record the causal
relations in the form of a causal matrix, denoted by
C. Specifically, if the variable corresponding to the i-th
prototype has a direct causal effect to the j-th prototype
variable, then the element Ci,j at the i-th row and j-th
column equals to 1; otherwise Ci,j = 0.

In the second step, based on the causal relations
between prototype variables obtained in the first step,
we try to discover the causal relations from prototype
variables to class labels. One straightforward way is to
exhaustively examine all possible relations from proto-
type variables to labels. However, such a simple method
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could be time consuming, what’s worse, it could suffer
from serious noises due to the disturbances from other
prototype variables. Instead, we propose an efficient ap-
proach to consider the variables in an effective order by
utilizing the previously obtained causal matrix C.

First of all, we define the causal order for a group
of variables as follows.

Definition 3.1. (Causal Order) Given a set of
variables {z1, z2, · · · , zK}, and a function G(zk) returns
the rank of the variable zk among the K variables. G
defines a causal order if G(zi) > G(zj) for any zi and zj
that there is no direct causal effect from zi to zj.

Obviously, the causal order of prototype variables
can be easily obtained from the causal matrix C. Then
we show in Theorem 3.1 that based on the faithfulness
and causal sufficiency assumptions, causal relations can
be effectively discovered without considering all vari-
ables. The faithfulness assumption states that the con-
ditional independence between two variables holds if
and only if there is no direct causal relation between
them. The causal sufficiency assumption excludes the
latent variable that has direct causal effect to more than
one target variables. Both of them are basic assump-
tions commonly used in causal discovery literature.

Theorem 3.1. Given a set of prototype variables
{z1, z2, · · · , zK} with known DAG causal structure and
causal order G. For a prototype variable zi and a label
yl, let S denotes the set consisting of the parents of zi
and variables ranked after zi but have direct causal effect
to yl, i.e., S = pa(zi) ∪ {z|z → yl,G(z) > G(zi)}. Un-
der the faithfulness and causal sufficiency assumption,
zi has no direct causal effect to the label yl if and only if
zi is conditional independent of yl given the set S, i.e.,
p(zi|S)× P (yl|S) = P (zi, yl|S).

Proof. ⇐ If there is a directed edge from zi to the label
yl, no matter what set S is given, the zi will be not
conditionally independent of the label (this is because
of the faithfulness assumption in causality literature). It
contradicts the condition. So there is no causal relation
from zi to the label yl.
⇒ Assume that the variables except for S, zi and yl
constitute the set T , we will give a proof to p(zi|S) ·
P (yl|S) = P (zi, yl|S). At first, when zi has no causal
effect to the label yl,

P (zi, yl|S) =
∑
T

P (zi, yl|S, T )P (T |S)

=
∑
T

P (zi|S, T ) · P (yl|S, T )P (T |S)

=
∑
T

P (zi, T |S) · P (yl|S, T )

The second line holds because there is no causal
effect from yl to any others so that zi is conditional
independent of yl given all other variables. We divide
T into two parts {T1, T2}, T1 represents the variables
that is before zi in the causal order G, T2 represents the
others. With the Markov condition, we have

P (zi, T1|S) = P (zi|S)P (T1|S)

P (yl|S, T ) = P (yl|S, T1)

then we have

P (zi, yl|S) =
∑
T1,T2

P (zi, T1, T2|S) · P (yl|S, T1, T2)

=
∑
T1,T2

P (zi, T1, T2|S) · P (yl|S, T1)

=
∑
T1

P (zi, T1|S) · P (yl|S, T1)

=
∑
T1

P (zi|S) · P (T1|S) · P (yl|S, T1)

= P (zi|S)
∑
T1

P (T1|S) · P (yl|S, T1)

= P (zi|S)
∑
T1

P (yl, T1|S)

= P (zi|S)P (yl|S).

With Theorem 3.1, we can effectively detect the
causal relations from prototype variables to labels as
shown in Algorithm 1. For each label yl, we maintain
a set Ql to collect the prototype variables that have a
direct causal effect to yl. The prototype variables are
iteratively examined one by one in the reverse order of
G. At the k-th iteration, we first find the prototype
variable ranked at the k-th position according to the
causal order. Without loss of generality, we assume this
prototype variable is zi. Then the parents of zi are
collected as pa(zi) according to the causal matrix C.
We again define a function f to predict the value of zi
with pa(zi) and Ql as inputs:

zi = f(pa(zi), Ql).

After that, we train the function f in the rule of empiri-
cal risk minimization and get the prediction value. And
with the actual value of zi, we can obtain the residual,
denoted by ε̂1. Similarly, we have ε̂2 as the residual be-
tween label yl and the prediction value with the same
input variables. At last, a statistical test is performed
to examine the independence of ε̂1 and ε̂2. If the two
groups of residuals are not dependent, then zi is condi-
tional independent of the label yl given all the variables
in Ql and pa(zi). Then there is no causal relation be-
tween zi and yl. Otherwise, zi has a direct causal effect
to yl, and will be added into Ql.
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Algorithm 1 Causal discovery from prototype vari-
ables to labels
input: A data set of n bags with prototype based

representations; the threshold value α;
The causal matrix C and causal order G of the K
prototype variables.

output: The set of prototype variables Ql that have
cause effect to each label yl.
for l = 1 to L do

Ql ← ∅
for k = K,K − 1, · · · , 1 do

locate the variable zi with G(zi) = k;
pa(zi) = {zt|∀t ∈ {1 : K} and Ct,i = 1}
ε̂1 ← Residuals(zi, pa(zi) ∪Ql)
ε̂2 ← Residuals(yl, pa(zi) ∪Ql)
pi ← TestIndependency(ε̂1, ε̂2)
if pi > α then

continue
else

Ql = Ql ∪ zi
end if

end for
end for

So far we have obtained the causal relations from
the prototype variables to class labels. This naturally
inspires us to train the MIML classifier by the causal
relations exploited. As the bags have been transformed
into vector representations based on the prototypes,
the original MIML problem becomes a single-instance
multi-label learning problem. As discussed before, label
correlations are only derived from prototype variable’s
causal relations. Some prototype variables cause many
labels at the same time, which take correlations to them.
Hence, the label correlations could be ignored if the
causal relations between the prototype variables and
labels have been exploited. We thus try to train a
classifier independently for each label. For each label yl,
we select the set of features corresponding to the causal
variables in Ql to train the classifier. Although we
convert the original MIML problem into much simpler
problems, it can be expected to not degenerate the
performance by exploiting the causal relations. This
is validated in our experiments.

At last, we discuss how to identify the key instance
from a bag that causes a specific label. Assume that
we already trained a classifier gl for label yl with the
above method, then we can also get a prediction for any
instance with the classifier, given that the instances and
bags sharing the same representation space based on the
prototypes. So the key instance can be easily identified
by selecting the one with maximum prediction value.

Table 1: Discovered causal relations between the fea-
tures and the labels from the synthetic dataset.

label z1 z2 z3 z4 z5 z6 z7

y1 1 0 1 0 0 0 0
y2 0 0 0 1 0 0 1
y3 0 1 0 0 0 1 1

Table 2: The datasets used in the experiments.

Data # instance # bags # label # label per bag

Bird Song 10232 548 13 2.1
MSRC v2 1758 591 23 2.5
Letter Frost 565 144 26 3.6
Letter Carroll 717 166 26 3.9
Scene 18000 2000 5 1.2
News 24406 612 10 1.5

4 Experiment

We evaluate the effectiveness of our method from dif-
ferent aspects. Firstly, we test on a synthetic data
to examine the causal relations identified by the pro-
posed method. Then, 6 MIML datasets along with 20
multi-instance datasets are used to compare the pro-
posed method with state-of-the-art methods on multiple
performance measures. After that, comparison results
on key instance detection and causal effect are reported.

4.1 Causal Discovery on Synthetic Data To val-
idate the effectiveness of causal discovery for the pro-
posed method, we generate a synthetic dataset with 7
feature variables {z1, z2, · · · , z7} and 3 label variables
{y1, y2, y3}. The causal function relationships among
the variables are described as follows:

z1 = sin(z24) + z22 + cos(z7) + E1, E1 ∼ U(−0.1, 0.1)

z2 = z23 + E2, E2 ∼ U(−0.5, 0.5)

z3 = E3, E3 ∼ U(−1.0, 1.0)

z4 = sin(z2) + sin(2z3) + E4, E4 ∼ U(−0.5, 0.5)

z5 = tanh(z6 + z7 + z2) + E5, E5 ∼ U(−0.3, 0.2)

z6 = sin(z2) + cos(2z4) + E6, E6 ∼ U(−0.5, 0.5)

z7 = cos(z6 + z3) + E7, E7 ∼ U(−0.3, 0.3)

y1 = I(z3 + z21 − 1.5 + ε1 > 0), ε1 ∼ N(0, 1)

y2 = I(3z4 + z27 − 0.7 + ε2 > 0), ε2 ∼ N(0, 1)

y3 = I(z22 + 2z6 + 4z7 + ε3 > 6.2), ε3 ∼ N(0, 1)

U stands for uniform distribution and N stands
for normal distribution. We generate 2000 data points
according to the function relationships on show and then
discover the causal relations with our algorithm. The

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited



Table 3: Comparison results (mean±std.) on six data sets. ↑(↓) indicates that the larger (smaller) the value,
the better the performance; •(◦) indicates that MIMLcaus is significantly better(worse) than the corresponding
method based on paired t-tests at 95%significance level.

MIMLcaus MIMLfast MIMLkNN MLR KISAR

Bird song

h.l. (↓) 0.054 ± 0.009 0.173 ± 0.011 • 0.089 ± 0.016 • 0.219 ± 0.013 • 0.107 ± 0.018 •
co. (↓) 1.681 ± 0.275 5.225 ± 0.517 • 2.420 ± 0.469 • 3.931 ± 0.600 • 2.677 ± 0.521 •
o.e. (↓) 0.055 ± 0.040 0.561 ± 0.072 • 0.163 ± 0.048 • 0.301 ± 0.077 • 0.205 ± 0.060 •
r.l. (↓) 0.026 ± 0.008 0.272 ± 0.030 • 0.074 ± 0.023 • 0.136 ± 0.024 • 0.085 ± 0.028 •
avg (↑) 0.938 ± 0.020 0.539 ± 0.037 • 0.852 ± 0.033 • 0.727 ± 0.041 • 0.822 ± 0.045 •
F1 (↑) 0.728 ± 0.042 0.088 ± 0.014 • 0.567 ± 0.040 • 0.398 ± 0.016 • 0.553 ± 0.104 •
MSRC v2

h.l. (↓) 0.063 ± 0.010 0.094 ± 0.008 • 0.107 ± 0.007 • 0.076 ± 0.010 • 0.070 ± 0.007 •
co. (↓) 4.447 ± 0.643 6.583 ± 0.561 • 6.962 ± 0.835 • 4.742 ± 0.697 6.401 ± 0.660 •
o.e. (↓) 0.244 ± 0.059 0.357 ± 0.056 • 0.454 ± 0.092 • 0.264 ± 0.052 0.308 ± 0.078 •
r.l. (↓) 0.082 ± 0.016 0.146 ± 0.022 • 0.159 ± 0.028 • 0.086 ± 0.015 0.156 ± 0.020 •
avg (↑) 0.757 ± 0.037 0.617 ± 0.041 • 0.587 ± 0.055 • 0.731 ± 0.036 0.615 ± 0.052 •
F1 (↑) 0.466 ± 0.064 0.195 ± 0.036 • 0.165 ± 0.028 • 0.453 ± 0.035 0.401 ± 0.050 •
Letter Frost

h.l. (↓) 0.102 ± 0.018 0.138 ± 0.020 • 0.126 ± 0.019 • 0.083 ± 0.022 ◦ 0.114 ± 0.022 •
co. (↓) 7.328 ± 1.378 9.071 ± 1.110 • 9.621 ± 1.702 • 5.778 ± 1.112 ◦ 9.835 ± 1.112 •
o.e. (↓) 0.142 ± 0.082 0.214 ± 0.121 • 0.128 ± 0.065 0.085 ± 0.094 0.142 ± 0.094
r.l. (↓) 0.114 ± 0.029 0.177 ± 0.019 • 0.179 ± 0.041 • 0.070 ± 0.024 ◦ 0.198 ± 0.024 •
avg (↑) 0.769 ± 0.037 0.630 ± 0.029 • 0.713 ± 0.043 • 0.834 ± 0.046 ◦ 0.643 ± 0.046 •
F1 (↑) 0.245 ± 0.053 0.052 ± 0.012 • 0.227 ± 0.041 0.444 ± 0.064 ◦ 0.213 ± 0.064

Letter Carroll

h.l. (↓) 0.135 ± 0.024 0.157 ± 0.024 0.206 ± 0.021 • 0.098 ± 0.018 ◦ 0.152 ± 0.022
co. (↓) 10.63 ± 1.953 11.50 ± 1.293 14.22 ± 1.255 • 7.487 ± 2.064 ◦ 13.02 ± 1.771
o.e. (↓) 0.225 ± 0.114 0.250 ± 0.102 0.606 ± 0.102 • 0.075 ± 0.049 ◦ 0.243 ± 0.054
r.l. (↓) 0.189 ± 0.042 0.224 ± 0.025 0.360 ± 0.040 • 0.090 ± 0.036 ◦ 0.311 ± 0.059 •
avg (↑) 0.670 ± 0.064 0.609 ± 0.042 0.417 ± 0.039 • 0.823 ± 0.048 ◦ 0.544 ± 0.056
F1 (↑) 0.376 ± 0.073 0.244 ± 0.050 • 0.116 ± 0.036 • 0.548 ± 0.069 ◦ 0.287 ± 0.051

Scene

h.l. (↓) 0.178 ± 0.010 0.199 ± 0.013 • 0.171 ± 0.013 ◦ 0.268 ± 0.012 • 0.187 ± 0.011 •
co. (↓) 0.989 ± 0.077 1.119 ± 0.079 • 0.937 ± 0.079 ◦ 1.137 ± 0.076 • 1.069 ± 0.101 •
o.e. (↓) 0.333 ± 0.039 0.369 ± 0.032 • 0.324 ± 0.032 0.377 ± 0.038 • 0.365 ± 0.035 •
r.l. (↓) 0.179 ± 0.018 0.209 ± 0.017 • 0.166 ± 0.017 ◦ 0.210 ± 0.018 • 0.198 ± 0.023 •
avg (↑) 0.783 ± 0.021 0.754 ± 0.017 • 0.793 ± 0.017 ◦ 0.750 ± 0.021 • 0.761 ± 0.022 •
F1 (↑) 0.560 ± 0.029 0.569 ± 0.033 0.581 ± 0.033 ◦ 0.570 ± 0.015 0.508 ± 0.032 •
News

h.l. (↓) 0.095 ± 0.011 0.174 ± 0.014 • 0.162 ± 0.013 • 0.240 ± 0.010 • 0.147 ± 0.012 •
co. (↓) 2.114 ± 0.241 3.448 ± 0.333 • 2.587 ± 0.369 • 3.600 ± 0.312 • 3.019 ± 0.404 •
o.e. (↓) 0.350 ± 0.067 0.646 ± 0.070 • 0.510 ± 0.067 • 0.645 ± 0.064 • 0.527 ± 0.094 •
r.l. (↓) 0.159 ± 0.023 0.291 ± 0.037 • 0.216 ± 0.039 • 0.290 ± 0.028 • 0.256 ± 0.043 •
avg (↑) 0.735 ± 0.037 0.511 ± 0.044 • 0.631 ± 0.051 • 0.509 ± 0.033 • 0.594 ± 0.060 •
F1 (↑) 0.559 ± 0.060 0.077 ± 0.020 • 0.278 ± 0.036 • 0.132 ± 0.016 • 0.336 ± 0.065 •
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result is shown in the Table 1. The entry at the i-th
row and j-th column is equal to 1 if the variable zj is
considered the cause of the label yi, and 0 otherwise. It
can be observed that the discovered causal relations are
consistent with the ground-truth relations.

4.2 Performance Comparison We then evaluate
the learning performance on 6 MIML datasets, including
Bird Song, MSRC v2, Letter Frost, Letter Carroll, Scene
and News [8]. The News dataset is processed from
the raw data 1. Some rare labels are deleted and the
dataset in our experiment has 612 documents from 10
classes: ‘politics’ , ‘arts’, ‘sports’, ‘business’, ‘economy’,
‘terrorism’, ‘books’, ‘soccer’, ‘crime’, ‘at-war’. In a
document, each sentence is represented by an instance of
50 dimensions, which is extracted with Word2Vec in the
“gensim” package. The detailed characteristics about
the datasets are summarized in Table 2.

We compare our approach MIMLcaus to some
state-of-the-art approaches, including MIMLKNN [28],
KiSar [13], MLR [20] and MIMLfast [12]. Six popular
measures, i.e. hamming loss(h.l.), coverage(co.), one
error(o.e.), ranking loss(r.l.), average precision(a.p.),
macro-F1(F1 ) are used to evaluate the performance.
Detailed description can be found in [21,25,32].

For each dataset, we separate it to ten groups in
random. And then we train with nine groups and test
with one group for ten times. For MIMLcaus, we set
α = 0.05 in the RESIT step. The parameters of other
approaches is chosen according to related paper. The
experiment result is given in Table 3.

We can observe that MIMLcaus outperforms other
methods in most cases. It only loses to MIMLKNN on
the Scene dataset, and MLR on the two letter datasets.
It can be concluded that the causal relations contribute
to the highly competitive performance. And exploiting
the causations can help us get rid of the correlations
between labels.

To validate that studying the causal relations is
meaningful in further, in addition to the MIML tasks,
we also test our algorithm in the multi-instance frame-
work. The only difference is that only one label exists so
that the proposed MIMLcaus approach can be directly
applied. The compared approaches are MiSVM [1],
MILES [3] and MIFV [24]. The datasets are collected
from “20 Newsgroups”. We divide every categorization
data into ten groups. And we train with nine groups
and test with one group for ten times. The accuracy of
the compared methods is shown in Table 4. Again our
MIMLcaus algorithm achieves the best performance on
19 of the 20 datasets.

1https://github.com/kgohil/MultiLableClassification

Table 4: Accuracy comparison on the multi-instance
datasets

miSVM MILES MIFV MIMLcaus

alt.atheism 0.67 0.48 0.72 0.86

comp.graphics 0.74 0.51 0.54 0.82

comp.os.ms-windows.misc 0.69 0.48 0.57 0.72

comp.sys.ibm.pc.hardware 0.77 0.51 0.51 0.80

comp.sys.mac.harware 0.73 0.48 0.52 0.80

comp.window.x 0.67 0.51 0.62 0.81

misc.forsale 0.63 0.48 0.60 0.68

rec.autos 0.64 0.48 0.60 0.77

rec.motorcycles 0.50 0.48 0.73 0.81

rec.sport.baseball 0.53 0.48 0.73 0.84

rec.sport.hockey 0.56 0.48 0.75 0.88

sci.crypt 0.64 0.48 0.69 0.77

sci.electronics 0.91 0.53 0.51 0.90

sci.med 0.59 0.48 0.72 0.80

sci.space 0.55 0.48 0.70 0.79

sci.religion.christian 0.50 0.48 0.74 0.83

talk.politics.guns 0.68 0.48 0.59 0.73

talk.politics.mideast 0.74 0.48 0.72 0.80

talk.politics.misc 0.74 0.48 0.65 0.71

talk.religion.misc 0.52 0.49 0.69 0.80

4.3 Results on Key Instance Detection One ad-
vantage of causal discovery in MIML is to understand
what instances trigger a specific label. To provide a
quantitive evaluation, we report the accuracy of key
instance detection on Bird and MSRC-v2. These two
datasets have the instance-level labels, and thus can be
used to validate whether the key instance identified is
associated with the class label. Given a label, we predict
for each bag about which instance is most likely to cause
the label. Then we examine whether the key instance
has the label. Table 5 shows the comparison results be-
tween our algorithm and KISAR. It can be seen that
MIMLcaus has a significant advantage on detecting the
key instances.

In addition, we also provide a qualitative analysis
of key instance detection on the text dataset News and
image dataset MSRC-v2. In Table 6, we show some
example causal pairs discovered on News dataset. For
the label in the first column, we present the sentence
corresponding to the key instance in the second column.
Because of the limited space, we only show three
examples. As we can see, it is reasonable that the
detected key instance causes the corresponding label.
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(a) image 1 (b) car (c) road (d) house (e) tree (f) sky

(g) image 2 (h) boat (i) house (j) sea (k) mountain (l) sky

Figure 2: The key instances detected for different labels of two example images on MSRC-v2.

Table 5: Key instance detection accuracy.

MIMLcaus KISAR

Bird song 0.676 ± 0.041 0.362 ± 0.107
MSRC-v2 0.704 ± 0.025 0.686 ± 0.045

Table 6: The causal instances discovered for some
example labels on the News dataset.

label sentences corresponding to the
key instance

politics Last year PolitiFact could find only
eight Republicans in Congress, out of
278 in the caucus, who had made on-
the-record comments accepting the re-
ality of man-made global warming.

sports Hellebuyck, playing in his second
N.H.L. game, had a strong follow-up to
his debut, a 3-1 victory over Minnesota
on Friday.

business Uber is spending a lot of that money
on an aggressive plan to expand inter-
nationally.

In Figure 2, we show the key instances detected by
our algorithm for different labels of two example im-
ages on MSRC-v2 dataset. It can be shown that the
detected key instances well match the corresponding la-
bels, which again validates that the proposed MIMLcaus
approach can find the key instance that causes a specific
label.

4.4 Examination on Causal Effect In causality
literature, if one variable has a causal effect to another
variable, then intervention on it will usually take a direct
and significant influence to the variables caused by it.
Based on this, we conduct an experiment to further

examine the discovered causal relations. Specifically,
for a specific label y∗, we first identify the key prototype
variable z∗ with the most positive causal effect to the
label. Then for all the test bags without the label y∗,
we modify z∗ to the maximum possible value. We thus
generate new bags which are more likely to have label
y∗ because it has a large value on the key prototype.
Because we don’t know the ground-truth of the modified
sample, we use the label of its nearest neighbor in the
training set to replace it. If most of generated samples
are with label y∗, then it implies that the discovered
variable z∗ does have a significant causal effect to the
label y∗. We then show the number of test bags that
will have the expected label after modification on the
key prototype variable. The results are shown in Table 7
with a comparison with KISAR. It can be observed that
our MIMLcaus approach can make more labels change
after modifying the key prototype variable, indicating
that MIMLcaus discovers reasonable causal relations.

5 Conclusion

In this paper, we propose to study the causal relations
between instances and labels for multi-instance multi-
label learning. By exploiting prototypes in the instance
to have a semantical representation of bags, we propose
an effective algorithm with guaranteed asymptotically
consistent to discover the feature variables that have di-
rect causal effect to a specific label. These variables then
are utilized to further improve the MIML classification
model as well as detect the key instances. Extensive
experiments validate that the proposed method can
achieve superior performance and discover reasonable
causal relations. In the future, more advanced MIML
algorithms will be incorporated with causal discovery
to further improve the interpretability of MIML models.
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Table 7: The number of bags with label changes after
modification of the discovered causal variable.

dataset MIMLcaus KISAR

Bird song 162.7 64.8
MSRC v2 203.7 156.9
Letter Frost 118.6 57
Letter Carroll 221.6 83.5
Scene 398.2 155
News 50.6 46.9
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